Split GFP

  1. Quantitative Analysis of α-Synuclein Solubility in Living Cells Using Split GFP Complementation. Kothawala, A., Kilpatrick, K., Novoa, J.A., Segatori, L. PLoS One. 2012; 7(8): e43505. doi: 10.1371/journal.pone.0043505. Published online 2012 August 22.
  2. Replication-competent influenza A virus that encodes asplit-green fluorescent protein-tagged PB2 polymerase subunit allows live-cell imaging of the virus life cycle. Avilov S.V., Moisy D., Munier S., Schraidt O., Naffakh N., Cusack S. J Virol. Feb 2012, 86(3):1433-48. Epub 2011 Nov 23.
  3. New cell line development for antibody-producing Chinese hamster ovary cells using split green fluorescent protein. Kim Y.G., Park B, Ahn J.O., Jung J.K., Lee H.W., Lee E.G. BMC Biotechnol. 2012 May 15;12:24.
  4. Assessment of membrane protein expression and stability using a split green fluorescent protein reporter. Rodríguez-Banqueri A, Kowalczyk L, Palacín M, Vázquez-Ibar JL.Anal Biochem. 2012 Apr 1;423(1):7-14. Epub 2012 Jan 8.
  5. Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine. Pan, J., Chen, Q., Willenbring, D., Yoshida, K., Tillman, T., Kashlan, O.B., Cohen, A., Kong, X-P., Xu, Y., Tang, P. Nat Commun. 2012 March 6; 3: 714. doi: 10.1038/ncomms1703.
  6. Fluorescentlabeling of antibody fragments usingsplitGFP. Ferrara F., Listwan P., Waldo G.S., Bradbury A.R. PLoS One. 2011;6(10):e25727. Epub 2011 Oct 5.
  7. Split GFP complementation assay for quantitative measurement of tau aggregation in situ. Chun W., Waldo G.S., Johnson G.V. Methods Mol Biol. 2011;670:109-23.
  8. Thermodynamics, kinetics, and photochemistry of β-strand association and dissociation in a split-GFP system. Do, K., Boxer, S.G. J Am Chem Soc. Nov 2011. 133(45):18078-81. Epub 2011 Oct 24.
  9. Experimental mapping of solubleproteindomains using a hierarchical approach. Pedelacq J.D., Nguyen H.B., Cabantous S., Mark B.L., Listwan P., Bell C., Friedland N., Lockard M., Faille A., Mourey L., Terwilliger T.C., Waldo G.S. Nucleic Acids Res. Oct 2011. 39(18):e125. Epub 2011 Jul 19.
  10. Targeting and imaging single biomolecules in living cells by complementation-activated light microscopy with split-fluorescent proteins. Pinaud, F., Dahan, M. PNAS. June 2011. 108(24):E201–E210.
  11. Imaging Type-III Secretion reveals dynamics and spatial segregation of Salmonella effectors. Schuyler B. VanEngelenburg, Palmer. A.E. Nat Methods. April 2010. 7(4): 325–330. Published online 2010 March 14. doi: 10.1038/nmeth.1437.
  12. Light-activated reassembly ofsplitgreenfluorescentprotein. Kent, K.P., Boxer, S.G. J Am Chem Soc. Mar 2011. 133(11):4046-52. Epub 2011 Feb 25.
  13. The optimization of in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis. Listwan P., Pédelacq J.D., Lockard M., Bell C., Terwilliger T.C., Waldo G.S. J.Struct.Funct Genomics. 2010 Mar;11(1):41-9. Epub 2010 Jan 13.
  14. Protease Activation of Split Green Fluorescent Protein. Callahan, B.P., Stanger, M.J., Belfort, M. ChemBioChem ‐ 2010 Nov 2;11(16):2259-63. doi: 10.1002/cbic.201000453.
  15. A GFP complementation system for monitoring and directing nanomaterial mediated protein delivery to human cellular organelles. Bale S.S., Kwon S.J., Shah D.A., Kane R.S., Dordick J.S. Biotechnol Bioeng. 2010 Dec 15;107(6):1040-7.
  16. In vivo protein stabilization based on fragment complementation and a split GFP system. Lindman S, Hernandez-Garcia A, Szczepankiewicz O, Frohm B, Linse S. Proc Natl Acad Sci USA. 2010 Nov 16;107(46):19826-31.Epub 2010 Nov 1.
  17. One-step split GFP staining for sensitive protein detection and localization in mammalian cells. Kaddoum L., Magdeleine E., Waldo G.S., Joly E., Cabantous S. Biotechniques. 2010 Oct;49(4):727-8, 730, 732 passim.
  18. Automated, high-throughput platform for protein solubility screening using a split-GFP system. Listwan P, Terwilliger TC, Waldo GS. J Struct Funct Genomics. 2009 Mar;10(1):47-55. Epub 2008 Nov 28.
  19. New Molecular Reporters for Rapid Protein Folding Assays. Cabantous, S., Rogers, Y., Terwilliger, T.C., Waldo, G.S. PLOSone. June 11, 2008.
  20. Deconstructing green fluorescent protein. Kent K.P., Childs W., Boxer S.G. J Am Chem Soc. Jul 2008.130(30):9664-5. Epub 2008 Jul 3.
  21. Split GFP complementation assay: a novel approach to quantitatively measure aggregation of tau in situ: effects of GSK3beta activation and caspase 3 cleavage. Chun W, Waldo GS, Johnson GV. J Neurochem. 2007 Dec;103(6):2529-39. Epub 2007 Oct 1.
  22. In vivo and in vitro protein solubility assays using split GFP. Cabantous S, Waldo GS. Nat Methods. 2006 Oct;3(10):845-54.
  23. Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. Cabantous S, Pédelacq JD, Mark BL, Naranjo C, Terwilliger TC, Waldo GS. J Struct Funct Genomics. 2005;6(2-3):113-9.
  24. A high-throughput screening of genes that encodeproteinstransported into the endoplasmic reticulum in mammalian cells. Ozawa T., Nishitani K., Sako Y., Umezawa Y. Nucleic Acids Res. Feb 2005. 24;33(4):e34.
  25. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Cabantous S, Terwilliger TC, Waldo GS. Nat Biotechnol. 2005 Jan;23(1):102-7. Epub 2004 Dec 5.
  26. Directed evolution approach to a structural genomics project: Rv2002 from Mycobacterium tuberculosis. Yang, J.K., Park, M.S., Waldo, G.S., Suh, S.W. Proc Natl Acad Sci USA. 2003. 100: 455-460, 2003.
  27. Genetic screens and directed evolution for protein solubility. Waldo G.S. Curr Opin Chem Biol 2003. 7(1),33-8.
  28. Engineering soluble proteins for structural genomics. Pédelacq, J-D., Piltch, E, Liong, E.C., Berendzen, J., Kim, C-Y., Rho, B-S., Park, M.S. Terwilliger, T.C., Waldo, G.S. Nature Biotechnology. September 2002. 20,927-932.
  29. Rapid protein-folding assay using green flourescent protein. Waldo, G.S., Standish, B.M., Berendzen, J., Terwilliger, T.C. Nature Biotechnology. July 1999. 17, 691 - 695.

  SuperFolder GFP

  1. SuperfolderGFP reporters validate diverse new mRNA targets of the classic porin regulator, MicF RNA. Corcoran C.P., Podkaminski D., Papenfort K., Urban J.H., Hinton J.C., Vogel J.Mol Microbiol. 2012 May;84(3):428-45. doi: 10.1111/j.1365-2958.2012.08031.x. Epub 2012 Mar 28.
  2. Usingsuperfoldergreen fluorescent protein for periplasmic protein localization studies. Dinh T., Bernhardt T.G. J Bacteriol. Sep 2011;193(18):4984-7. Epub 2011 Jul 15.
  3. An improved bimolecular fluorescence complementation tool based on superfolder green fluorescent protein. Zhou J., Lin J., Zhou C., Deng X., Xia B.. Acta Biochim Biophys Sin (Shanghai). 2011 Mar;43(3):239-44. Epub 2011 Jan 27.
  4. SuperfolderGFP is fluorescent in oxidizing environments when targeted via the Sec translocon. Aronson D.E., Costantini L.M., Snapp E.L. Traffic. 2011 May;12(5):543-8. doi: 10.1111/j.1600-0854.2011.01168.x. Epub 2011 Feb 25.
  5. A novel method for high-level production of TEV protease bysuperfolderGFP tag. Wu X., Wu D., Lu Z., Chen W., Hu X., Ding Y. J Biomed Biotechnol. Feb 2010. 009;2009:591923. Epub.
  6. Applicability ofsuperfolderYFP bimolecular fluorescence complementation in vitro. Ottmann C., Weyand M., Wolf A., Kuhlmann J., Ottmann C. Biol Chem. Jan. 2009, 390(1):81-90.
  7. Metal ion accessibility of histidine-modifiedsuperfoldergreen fluorescent protein expressed in Escherichia coli. Tansila N., Becker K., Isarankura Na-Ayudhya C., Prachayasittikul V., Bülow L. Biotechnol Lett. Aug 2008, 30(8):1391-6. Epub 2008 Mar 13.
  8. Expression and use of superfolder green fluorescent protein at high temperatures in vivo: a tool to study extreme thermophile biology. Cava F., de Pedro M.A., Blas-Galindo E., Waldo, G.S., Westblade L.F., Berenguer J. Environ Microbiol. March, 2008. 10(3), 605-13.
  9. The rough energy landscape of sfGFP is linked to the chromophore. Andrews B.T., Schoenfish A.R., Roy M., Waldo G., Jennings P.A. J Mol Biol. Oct 2007. 2:476-90.
  10. Engineering and characterization of a superfolder green fluorescent protein. Pédelacq, J-D., Cabantous S., Tran,T., Terwilliger,T.C, Waldo G.S. Nature Biotechnology. Jan 2006. 24(1), 79–88.

  Protein-Protein Interactions

  1. Light-activated reassembly of split green fluorescent protein. Kent K.P., Boxer S.G. J Am Chem Soc..Mar 2011. 133(11):4046-52. Epub 2011 Feb 25.
  2. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Feinberg, E.H., VanHoven, M.K., Bendesky, A., Wang, G., Fetter, R.D., Shen, K., Bargmann, C.I. Neuron. Feb 2008. 57(3) 353-363.
  3. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: Scope and mechanism. Magliery, T.J., Wilson, C.G.M., Pan, Mishler D., Ghosh ,I., Hamilton, A.D., Regan, L. J of Am Chem Soc 2005. 127(1):146-157.

Drug Discovery

  1. Molecular diversity in engineered protein libraries. Barakat, N.H. and Love, J.J. Chem Biol. June 2007. 11:335–341.
  2. A high-throughput screen for compounds that inhibit aggregation of the Alzheimer’s peptide. Kim , W., Kim , Y., Min , J., Kim , D-J., Chang, Y-T., Hecht, M.H. ACS Chem Biol. Aug. 2006 1(7), 461-9.

  Other Applications (Adapted from

  1. Understanding Proteins. Zaragoza, K., Hines. J. Innovation. Oct/Nov 2006.
  2. Tolerance for random recombination of domains in prokaryotic and eukaryotic translation systems: Limited interdomain misfolding in a eukaryotic translation system. Hirano, N., T. Sawasaki, et al. (2006). Proteins-Structure Function and Bioinformatics 64(2): 343-354.
  3. Domain structure and protein interactions of the silent information regulator Sir3 revealed by screening a nested deletion library of protein fragments. King, D. A., B. E. Hall, et al. (2006). Journal of Biological Chemistry 281(29): 20107-20119.
  4. Combinatorial approaches to probe the sequence determinants of protein aggregation and amyloidogenicity. Wurth, C., W. Kim, et al. (2006). Protein and Peptide Letters 13(3): 279-286.
  5. In vitro evolution of proteins. Matsuura, T. and T. Yomo (2006). Journal of Bioscience and Bioengineering 101(6): 449-456.
  6. Recent advances in biocatalysis by directed enzyme evolution. Rubin-Pitel, S. B. and H. M. Zhao (2006).Combinatorial Chemistry & High Throughput Screening 9(4): 247-257.
  7. A suite of parallel vectors for baculovirus expression. Pengelley, S. C., D. C. Chapman, et al. (2006). Protein Expression and Purification 48(2): 173-181.
  8. Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Fisher, A. C., W. Kim, et al. (2006). Protein Science 15(3): 449-458.
  9. Mutagenesis of the central hydrophobic cluster in A beta 42 Alzheimer's pepticle - Side-chain properties correlate with aggregation propensities. de Groot, N. S., F. X. Aviles, et al. (2006). FEBS Journal 273(3): 658-668.
  10. A comparison of the fluorescence dynamics of single molecules of a green fluorescent protein: One- versus two-photon. Cotlet, M., P. M. Goodwin, et al. (2006). Chemphyschem. 7(1): 250-260.
  11. Intracellular conformational alterations of mutant SOD1 and the implications for fALS-associated SOD1 mutant induced motor neuron cell death. Zhang, F. J. and H. N. Zhu (2006). Biochimica et Biophysica Acta 1760(3): 404-414.
  12. Combinatorial library approaches for improving soluble protein expression in Escherichia coli. Hart, D. J. and F. Tarendeau (2006). Acta Crystallographica Section D Biological Crystallography. 62(Part 1): 19-26.
  13. Identification of putative domain linkers by a neural network - Application to a large sequence database. Miyazaki, S., Y. Kuroda, et al. (2006). BMC Bioinformatics 7: 323.
  14. Towards the preparative and large-scale precision manufacture of virus-like particles. Pattenden, L. K., A. P. J. Middelberg, et al. (2005). Trends in Biotechnology 23(10): 523-529.
  15. Expression and purification of SARS coronavirus proteins using SUMO-fusions. Zuo, X., M. R. Mattern, et al. (2005). Protein Expression and Purification 42(1): 100-110.
  16. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Sorensen, H. P. and K. K. Mortensen (2005).Microbial Cell Factories 4: 1.
  17. Advanced genetic strategies for recombinant protein expression in Escherichia coli. Sorensen, H. P. and K. K. Mortensen (2005). Journal of Biotechnology 115(2): 113-128.
  18. High-throughput and multiplexed protein array technology: Protein-DNA and protein-protein interactions. Sakanyan, V. (2005). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 815(1-2): 77-95.
  19. Identification and optimization of protein domains for NMR studies. Card, P. B. and K. H. Gardner (2005). Nuclear Magnetic Resonance of Biological Macromolecules, Part C SO - Methods in Enzymology; v.394; p.3-16.
  20. Expression systems for cloned xenobiotic transporters. Pritchard, J. B. and D. S. Miller (2005). Toxicology and Applied Pharmacology 204(3): 256-262
  21. Controlled evolution as an approach to the design of efficient biocatalysts. Zagrebelny, S. N. (2005). Uspekhi Khimii 74(3): 307-320.
  22. Functional regions of the Pseudomonas aeruginosa cytotoxin ExoU. Rabin, S. D. P. and A. R. Hauser (2005). Infection and Immunity 73(1): 573-582.
  23. Dual expression system suitable for high-throughput fluorescence-based screening and production of soluble proteins. Braud, S., M. Moutiez, et al. (2005). Journal of Proteome Research. 4(6): 2137-2147.
  24. Sequence determinants of enhanced amyloidogenicity of Alzheimer A beta 42 peptide relative to A beta 40. Kim, W. and M. H. Hecht (2005). Journal of Biological Chemistry 280(41): 35069-35076.
  25. Secretion and surface display of green fluorescent protein using the yeast Saccharomyces cerevisiae. Huang, D. and E. V. Shusta (2005). Biotechnology Progress 21(2): 349-357.
  26. A simple dual selection for functionally active mutants of Plasmodium falciparum dihydrofolate reductase with improved solubility. Japrung, D., S. Chusacultanachai, et al. (2005). Protein Engineering, Design and Selection 18(10): 457-464.
  27. Directed evolution of proteins for heterologous expression and stability. Roodveldt, C., A. Aharoni, et al. (2005). Current Opinion in Structural Biology 15(1): 50-56.
  28. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells. Nordlund, H. R., O. H. Laitinen, et al. (2005). Biochemical and Biophysical Research Communications 336(1): 232-238.
  29. Protein crystallization: virtual screening and optimization. DeLucas, L. J., D. Hamrick, et al. (2005). Progress in Biophysics & Molecular Biology 88(3): 285-309.
  30. Structural and functional features of an NDP kinase from the hyperthermophile crenarchaeon Pyrobaculum aerophilum. Pedelacq, J. D., G. S. Waldo, et al. (2005). Protein Science 14(10): 2562-2573.
  31. Combinatorial approaches to protein stability and structure. Magliery, T. J. and L. Regan (2004). European Journal of Biochemistry 271(9): 1595-1608.
  32. The use of recombinant methods and molecular engineering in protein crystallization. Derewenda, Z. S. (2004). Methods. 34(3): 354-363.
  33. Developments in structural genomics: Protein purification and function interpretation. Zhou, C. Z. and Y. X. Chen (2004). Current Genomics 5(1): 37-48.
  34. Asymmetric synthesis and translational competence of L-alpha-(1-cyclobutenyl)glycine. Jayathilaka, L. P., M. Deb, et al. (2004) Organic Letters 6(21): 3659-3662.
  35. High-throughput structural biology in drug discovery: Protein kinases. Stout, T. J., P. G. Foster, et al. (2004). Current Pharmaceutical Design 10(10): 1069-1082.
  36. Antibodies from phage antibody libraries. Bradbury, A. R. M. and J. D. Marks (2004). Journal of Immunological Methods 290(1-2): 29-49.
  37. Mutation of active site residues in the chitin-binding domain ChBD(ChiAl) from chitinase A1 of Bacillus circulans alters substrate specificity: Use of a green fluorescent protein binding assay. Hardt, M. and R. A. Laine (2004).Archives of Biochemistry and Biophysics426(2): 286-297.
  38. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. Dyson, M. R., S. P. Shadbolt, et al. (2004). BMC Biotechnology 4: 32.
  39. Predictive models for protein crystallization. Rupp, B. and J. W. Wang (2004). Methods 34(3): 390-407.
  40. Toxicity-based selection of Escherichia coli mutants for functional recombinant protein production: application to an antibody fragment. Belin, P., J. Dassa, et al. (2004). Protein Engineering Design & Selection 17(5): 491-500.
  41. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Ignatova, Z. and L. M. Gierasch (2004). PNAS USA 101(2): 523-528.
  42. Techniques and applications: The heterologous expression of Mycobacterium tuberculosis genes is an uphill road. Bellinzoni, M. and G. Riccardi (2003). Trends in Microbiology 11(8): 351-358.
  43. In vitro evolution of proteins for drug development. Delagrave, S. and D. J. Murphy (2003). Assay and Drug Development Technologies 1(1): 187-198.
  44. The TB structural genomics consortium: A resource for Mycobacterium tuberculosis biology. Terwilliger, T. C., M. S. Park, et al. (2003). Tuberculosis. 83(4): 223-249.
  45. Biotechnological applications of green fluorescent protein. March, J. C., G. Rao, et al. (2003). Applied Microbiology and Biotechnology 62(4): 303-315.
  46. Three-dimensional localization of divergent region 3 of the ryanodine receptor to the clamp-shaped structures adjacent to the FKBP binding sites. Zhang, J., Z. Liu, et al. (2003). Journal of Biological Chemistry 278(16): 14211-14218.
  47. Plasmodium falciparum histidine-rich protein II binds to actin, phosphatidylinositol 4,5-bisphosphate and erythrocyte ghosts in a pH-dependent manner and undergoes coil-to-helix transitions in anionic micelles. Benedetti, C. E., J. Kobarg, et al. (2003). Molecular & Biochemical Parasitology 128(2): 157-166.
  48. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: Evidence of stable tertiary structure. Offredi, F., F. Dubail, et al. (2003). Journal of Molecular Biology 325(1): 163-174.
  49. Fluorescent cellular sensors of steroid receptor ligands. Muddana, S. S. and B. R. Peterson (2003). Chembiochem 4(9): 848-855.
  50. Amino terminal interaction in the prion protein identified using fusion to green fluorescent protein. Yao, Y. X., J. Y. Ren, et al. (2003). Journal of Neurochemistry 87(5): 1057-1065.
  51. A novel yeast expression system for the overproduction of quality-controlled membrane proteins. Griffith, D. A., C. Delipala, et al. (2003). FEBS Letters 553(1-2): 45-50.
  52. Protein expression systems for structural genomics and proteomics. Yokoyama, S. (2003). Current Opinion in Chemical Biology 7(1): 39-43.
  53. A system using convertible vectors for screening soluble recombinant proteins produced in Escherichia coli from randomly fragmented cDNAs. Nakayama, M. and O. Ohara (2003). Biochemical and Biophysical Research Communications 312(3): 825-830.
  54. High-throughput protein expression for the post-genomic era. Chambers, S. P. (2002). Drug Discovery Today 7(14): 759-765.
  55. The genesis of high-throughput structure-based drug discovery using protein crystallography. Kuhn, P., K. Wilson, et al. (2002). Current Opinion in Chemical Biology 6(5): 704-710.
  56. The promise of structural genomics in the discovery of new antimicrobial agents. Buchanan, S. G., J. M. Sauder, et al. (2002). Current Pharmaceutical Design 8(13): 1173-1188.
  57. Structural genomics: Bridging functional genomics and structure-based drug design. Buchanan, S. G. (2002). Current Opinion in Drug Discovery & Development 5(3): 367-381.
  58. Three-dimensional reconstruction of the recombinant type 2 ryanodine receptor and localization of its divergent region 1. Liu, Z., J. Zhang, et al. (2002). Journal of Biological Chemistry 277(48): 46712-46719.
  59. High-throughput crystallography for lead discovery in drug design. Blundell, T. L., H. Jhoti, et al. (2002). Nature Reviews Drug Discovery. 1(1): 45-54.
  60. Combinatorial approaches to engineering hybrid enzymes. Stevenson, J. D. and S. J. Benkovic (2002). Journal of the Chemical Society-Perkin Transactions 2(9): 1483-1493.
  61. Construction and characterization of protein libraries composed of secondary structure modules. Matsuura, T., A. Ernst, et al. (2002). Protein Science 11(11): 2631-2643.
  62. Mutations that reduce aggregation of the Alzheimer's A beta 42 peptide: an unbiased search for the sequence determinants of A beta amyloidogenesis. Wurth, C., N. K. Guimard, et al. (2002). Journal of Molecular Biology 319(5): 1279-1290.
  63. Fusion to green fluorescent protein improves expression levels of Theileria parva sporozoite surface antigen p67 in insect cells. Kaba, S. A., V. Nene, et al. (2002). Parasitology 125: 497-505.
  64. Structural genomics: Opportunities and Challenges. Mittl, P. R. E. and M. G. Grutter (2001). Current Opinion in Chemical Biology 5(4): 402-408.
  65. High-throughput three-dimensional protein structure determination. Heinemann, U., G. Illing, et al. (2001). Current Opinion in Biotechnology 12(4): 348-354.
  66. The Berlin "Protein structure factory" initiative: A technology-oriented approach to structural genomics Workshop on Data Mining in Structural Biology. Heinemann, U. (2001). Ernst Schering Research Foundation Workshop: Data mining in structural biology; 2001; v.34; p.101-121 Schmidt-Dannert, C. (2001). "Directed evolution of single proteins, metabolic pathways, and viruses." Biochemistry 40(44): 13125-13136.
  67. A tour of structural genomics. Brenner, S. E. (2001) Nature Reviews Genetics 2(10): 801-809.
  68. Green fluorescent protein as a secretory reporter and a tool for process optimization in transgenic plant cell cultures. Liu, S., R. C. Bugos, et al. (2001).Journal of Biotechnology 87(1): 1-16.
  69. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. Kim, C. A., M. L. Phillips, et al. (2001). EMBO (European Molecular Biology Organization) Journal 20(15): 4173-4182.
  70. Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Wigley, W. C., R. D. Stidham, et al. (2001). Nature Biotechnology 19(2): 131-136.
  71. Photoisomerization of green fluorescent protein and the dimensions of the chromophore cavity. Chen, M. C., C. R. Lambert, et al. (2001).Chemical Physics 270(1): 157-64.
  72. Solution structure of Pyrobaculum aerophilum DsrC, an archaeal homologue of the gamma subunit of dissimilatory sulfite reductase. Cort, J. R., S. V. S. Mariappan, et al. (2001). European Journal of Biochemistry 268(22): 5842-5850.
  73. Green fluorescent protein variants fold differentially in prokaryotic and eukaryotic cells. Sacchetti, A., V. Cappetti, et al. (2001). Journal of Cellular Biochemistry. Suppl 36: 117-128.
  74. Exogenous peptide and protein expression levels using retroviral vectors in human cells. Sandrock, T. M., B. Risley, et al. (2001). Molecular Therapy 4(5): 398-406.
  75. An integrated approach to structural genomics. Heinemann, U., J. Frevert, et al. (2000). Progress in Biophysics & Molecular Biology 73(5): 347-62.
  76. Production of fluorescent single-chain antibody fragments in Escherichia coli. Schwalbach, G., A. P. Sibler, et al. (2000). Protein Expression and Purification 18(2): 121-132.
  77. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Wall, M. A., M. Socolich, et al. (2000). Nature Structural Biology 7(12): 1133-1138.